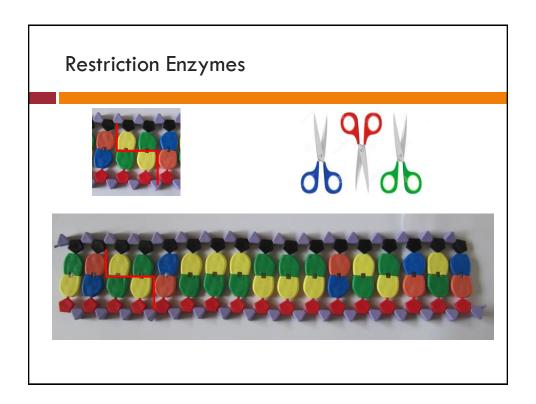
TECHNIQUES IN MOLECULAR BIOLOGY: RESTRICTION ENZYMES

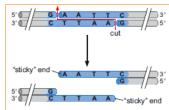

Course: Molecular Biology (BIOL333)

Instructor: Dr. M A Srour

Textbook:

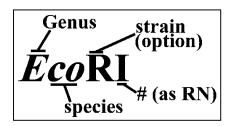
Watson J, et al. (2014). Molecular Biology of the Gene, 7^{th} ed.

Chap 7/ pp.147-



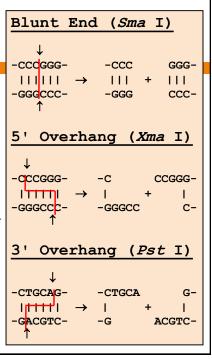
Restriction Enzymes (RE)

- RE: Site-specific endonucleases of prokaryotes
- Restriction enzymes = restriction endonucleases
- Recognize short (4-8 bp) target sequences called Restriction site, typically Palindromic sites


EcoRI restriction site

Restriction Enzymes (RE)

- Type II REs cuts adjacent or within restriction sites
- Type II enzymes are powerful tools in molecular biology
- RE are named after the bacterial species/strain from which it was isolated

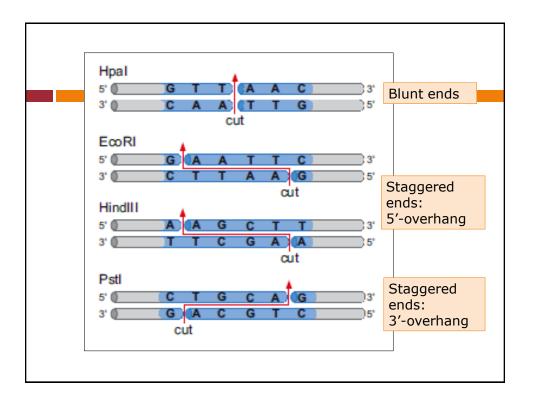


Features of Restriction Sites

- □ Typically 4-8 bp & palindromic
- □ Frequency of RS: 4^4 = 256 bp, 4^6 =4096 bp, 4^8 =~65000 bp
- □ Degeneracy permitted by some enzymes
- □ Some Res are sensitive to methylation

Features of Restriction Sites

- □ Cleavage produces 5'-PO₄ & 3'-OH
- Both strands cleaved between same residues:
 - Blunt ends (flush ends)
 - Staggered /sticky ends at RT
 - 5'-overhangs
 - 3'-overhangs



Some	Res	and	their	recognition	sequences
------	-----	-----	-------	-------------	-----------

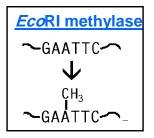
Enzyme	Sequence	Cut frequency	Site/ type of ends
Sau3A	5'- GATC-3'	0.25 kb	Tetrameric site/ sticky
EcoRI	5'-G AATTC-3'	4 kb	Hexameric site / sticky
Notl*	5'-GC GGCCGC- 3'	65 kb	Octomeric site / sticky
Smal	5'-CCC GGG-3'	4 kb	Hexameric site / blunt

Source: Sau3A: Staphylococcus aureus; EcoRI: Escherichia coli; Notl: Nocardia otitidis-caviarum; Smal: Serratia marcescens.

*Methylation sensitive/ cleavage blocked at all sites by methylation

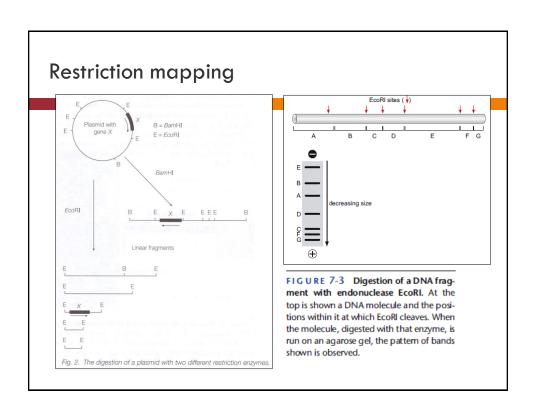
REs

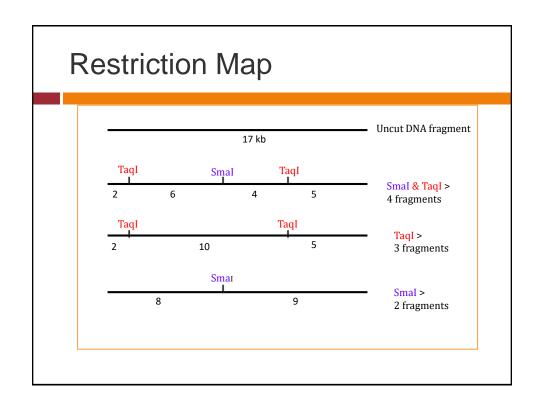
Isoschizomers

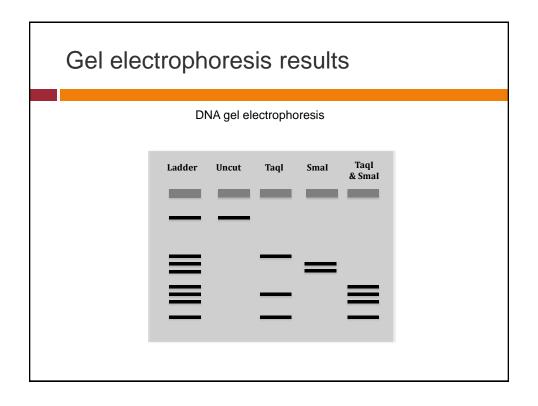

- · Smal CCC↓GGG
- Xma I C↓CCGGG

Compatible Ends

- · Pst | CTGCA↓G
- Nsi I ATGCA↓T


Functions of Restriction Enzymes


- $\hfill\Box \mbox{Function}$ to protect bacteria from phage (virus) infection
- □Why REs do not destroy the host cell's own DNA?
- □ Almost all REs are paired with Methylases that recognize & methylate the same DNA sites
- □The two enzymes RE & Methylase are collectively called a Restriction-Modification system (R-M system)



Applications of REs

- Restriction mapping & RFLP analysis (discussed later??)
- □ Cloning: Insertion of DNA fragments into cloning vectors
- □ Restriction or digestion of DNA by RE
 - □ Usually done in the appropriate buffer and temperature, in a small volume (~20µI)
 - Digested DNA fragments are analyzed by agarose gel electrophoresis

